Visual-vestibular interaction during off-vertical axis rotation.
نویسندگان
چکیده
The aim of this study was to further define the eye movement response to combined visual and vestibular stimulation, especially during linear acceleration. Subjects included 15 asymptomatic healthy individuals (8 females and 7 males) between the ages of 20 and 31 years. Vestibular stimulation consisted of earth-vertical axis rotation and off-vertical axis rotation (OVAR). Visual stimuli consisted of projected vertical stripes that were rotated for optokinetic trials and stationary for visual augmentation trials. A small laser target (0.5 mW, 0.5 degree arc) that rotated with the subject was used for fixation trials. Eye movements were measured with electro-oculography. Results showed that visual-vestibular interaction during sinusoidal rotation was not affected by a 15 degree off-vertical tilt. Constant velocity OVAR induced a continuous nystagmus whose slow component velocity contained a nonzero baseline, that is, a bias, and a periodic fluctuation at the rotation frequency, that is, a modulation component. The modulation component during visual fixation was reduced as compared with that seen during rotation in the dark, but was not absent. Constant velocity OVAR in the presence of earth-fixed stripes induced a consistent sinusoidal modulation. Our results suggest that visual-vestibular interaction for otolith stimulation differs from visual-vestibular interaction for semicircular canal stimulation. The modulation component of the response to OVAR appears to be modified by visual stimulation to a lesser extent than other vestibular-induced eye movements and thus may reflect a more "direct" vestibulo-ocular response. The bias component of the response to OVAR can be substantially influenced by vision and thus may depend upon more "indirect" pathways.
منابع مشابه
Relative diagnostic value of ocular vestibular evoked potentials and the subjective visual vertical during tilt and eccentric rotation.
OBJECTIVE We compared vibration-induced ocular vestibular evoked myogenic potentials (OVEMPs) with the visual vertical during whole-body roll tilt and eccentric rotation in healthy subjects and patients with unilateral vestibular loss, to determine which test was most sensitive in discriminating impaired utricle function. METHODS OVEMPs and the visual vertical were measured in 11 patients and...
متن کاملSmooth pursuit eye movements and otolith-ocular responses are differently impaired in cerebellar ataxia.
Horizontal and vertical smooth pursuit was compared with otolith-ocular responses in 11 patients with cerebellar ataxia and 21 normal subjects using three-dimensional magnetic search coil eye movement recordings. Otolith-ocular responses were investigated during off-vertical axis rotation. This stimulus induces nystagmus consisting of the exponentially decaying canalicular response, and an eye-...
متن کاملVerticality perception during off-vertical axis rotation.
During prolonged rotation about a tilted yaw axis, often referred to as off-vertical axis rotation (OVAR), a percept of being translated along a conical path slowly emerges as the sense of rotation subsides. Recently, we found that these perceptual changes are consistent with a canal-otolith interaction model that attributes the illusory translation percept to improper interpretation of the amb...
متن کاملModification of Eye Movements and Motion Perception during Off-Vertical Axis Rotation
submitted to: Seventh Symposium on the Role of the Vestibular Organs in Space Exploration; Noordwijk, The Netherlands; June 7-9, 2006.
متن کاملCoding of Velocity Storage in the Vestibular Nuclei
Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of vestibular research : equilibrium & orientation
دوره 6 2 شماره
صفحات -
تاریخ انتشار 1996